ELIMINATION OF PERSISTENT ORGANICS FROM INDUSTRIAL WASTE WATER AND CONTAMINATED GROUND WATER ON THE EXAMPLE OF EDTA

Van Daele D.¹, Sörensen M.² and Weckenmann J.²

¹ a.c.k. aqua concept Benelux, representation for a.c.k. aqua concept GmbH, Slotgrachtstraat 5, 9940 Evergem, Belgium, dvandaele@ack-aquaconcept.com, Telephone: +32 (0)9 3445176, Fax: +32 (0)9 3445176

² a.c.k. aqua concept GmbH, CEO’s, engineering, design and production of UV disinfection and oxidation processes, Wikingerstrasse 9A, 76189 Karlsruhe, Germany.
Problem definition

• Protection Ground water layers (EU)
 - Dehydration due to intensive pumping
 - Degradation of the water quality

• Industry is looking for alternatives for their water supply
 - Surface water
 - Reuse process water, waste water
 - Rainwater

• Clean up of contaminated soil and related ground water

Chelators, organic micro pollution, persistent components are the cause and the effect of the problem
Example EDTA

Patented in Germany 1935 by F. Munz

• Widely USED as complexation agent, anti coagulant in
 ✓ Personal care products
 ✓ Pharmacy
 ✓ Surface treatment
 ✓ Food
 ✓ Paper industry etc.

• Properties
 ✓ Strong chelating properties
 ✓ Non toxic (overall), other chelators are toxic (cyanide, polyamines a.o.)
 ✓ Persistent

Environmental behavior
 ✓ Slow removal under many environmental conditions, accumulation
 ✓ The most abundant anthropogenic compound in surface water
 ✓ Low concentration can either stimulate or decrease plankton and algea growth.
 ✓ In elevated concentrations toxic to bacteria and mammals (high concentrations)

Langjähnige Entwicklung EDTA

22-25 april 2008
Conventional treatment
Physical separation

EDTA is not degraded or removed in conventional waste water treatment

- Precipitation
 - Not possible, strong chelating properties, used as anti-coagulant
 - Metals are remobilized from the sludge
 - Bad performance, effluent specifications not kept

- Filtration, Ion-exchange
 - Concentrated waste stream, can not be discharged without treatment.

- Recovery
 - High costs, bad quality after recuperation
 - High emissions, safety precautions necessary

- Activated carbon
 - Production of AC is energy consuming
 - Not reliable due to competitive components
 - Waste stream (burning or regeneration necessary)
 - For EDTA AC is useless due to its hydrophylic character
Conventional treatment
Oxidation processes

EDTA is not degraded or removed in conventional waste water treatment

- **Biology**
 - Recalcitrant, due to strong metal chelating properties. Other chelates toxic.

- **Electrolyses (AOP)**
 - Recuperation of metals OK
 - Chelate changes into other forms (EDTA → EDDA-N,N, EDMA, IMDA) with same properties
 - Energy consuming
 - High investment costs
 - Creation of high sludge amounts
 - Corrosion problems

- **Chlorination**
 - Formation of persistent by-products (AOX)

- **Ozon**
 - Is dangerous product, must be destroyed by UV
 - Ozon doesn’t or slowly reacts with amines, in the case of EDTA, destruction of Ozon
 - Formation of by-products (e.g. Formaldehyde)
Comparison in EDTA degradation speed with different techniques

EDTA degrades and can be removed due to **smart** UV-systems

a.c.k. AOT = Enviolet® systems
New treatment ENVIOLET®-systems

EDTA degrades and can be removed due to smart UV-systems.

- **0 h** Enviolet® Highly diluted sample
- **2 h** Enviolet® Diluted
- **4 h** Enviolet® Undiluted

22-25 april 2008
SMART ENVIOLET®-systems

• Enviolet® UV oxidation process → Cold combustion in the water phase. Chelates (EDTA tartrate, citrate etc.) → CO₂

• Enviolet® basic equipment:
 ➢ Batch tank
 ➢ Enviolet® UV-reactor(s)
 ➢ Dosing station(s)
 ➢ Control panel

A combination of High performance Enviolet® UV reactors and fully automated intelligent designed process control, results in an innovative UV technology.
SMART
ENVIOLET®-systems

- The abrasive rotational flow in the reactor
- A very good material transfer, guaranteed by the induced high turbulence, even in very dirty and turbid media (optimisation of the process)
- The high quality of the chosen components
Application examples
ENVIOLET®-systems

- Flexible and compact
- Applicable:
 - for small and big flows.
 - for liquids with low UV transmission and high concentrations of suspended solids (e.g. sludge)
 - for corrosive streams
 - for different waste streams in combination or in successive batch treatment
- Energy and water recuperation possible
- Improvement of product quality and at the same time prevention of waste water.
Testing
The way from lab-test work to full-scale UV-applications

UV-treatment a.c.k. Laboratory
PVP-waste water

•Diagram 1: Laboratory treatment. TOC-degradation by UV-oxidation and subsequent biological elimination (Z/W-Test after 2 d)
The way from lab-test work to full-scale UV-applications

UV-treatment a.c.k. Laboratory
PVP-waste water

• Diagram 2: Pilot-operation by the client (a.c.k. pilot plant). Comparison of the degradation by the laboratory scaled facility and the pilot plant.
The way from lab-test work to full-scale UV-applications

Wastewater treatment UV Reactor Enviiolet® (a.c.k. aqua concept GmbH)
TOC Analyses Divergan wastewater F 414 S

The graph shows the Total Organic Carbon (TOC) analyses for Divergan wastewater F 414 S. The data is presented for different dates ranging from 01.09.2003 to 31.01.2003. The graph displays two main lines:

- A red line representing the input UV reactor s2.
- A blue line representing the effluent, hold up tank s3.

Key events:

- Flow rate increased from 120 t to 240 t on a specific date.

The graph indicates variability in TOC levels with certain dates showing significant fluctuations.
Application examples

ENVIOLET®-systems

Enviolet®— UV — Reactors

- Flexible and compact

Upgrading without additional space
Application examples
ENVIOLET®-systems

• for small and big flows
Application examples
ENVIOLET®-systems

precipitation after Enviolet® treatment,
samples shown are without addition of coagulant

Formation of a very dense, compact sludge
Table I: Chemical composition of the waste streams of treatment processes in surface finishing

<table>
<thead>
<tr>
<th>Process</th>
<th>Chelators</th>
<th>Classical treatments</th>
<th>Modern Enviolet® method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroless Nickel</td>
<td>Organic carbonates, ammonia</td>
<td>Rinse waters only</td>
<td>Rinses & concentrates e.g. Enviolet®</td>
</tr>
<tr>
<td>Electroless Copper A</td>
<td>Organic carbonates (tartrate, citrate)</td>
<td>Rinse waters only</td>
<td>Rinses & concentrates e.g. Enviolet®</td>
</tr>
<tr>
<td>Electroless Copper B</td>
<td>Polyaminocarboxylate (EDTA & other complexes)</td>
<td>Already difficult for rinse waters</td>
<td>Rinses & concentrates e.g. Enviolet®</td>
</tr>
<tr>
<td>Zinc-Nickel</td>
<td>Polyamines (EDTA, cyanide & other complexes)</td>
<td>Already difficult for rinse waters - Good to satisfactory</td>
<td>Rinses & semi concentrates e.g. Cyanomat®</td>
</tr>
<tr>
<td>Cyanide</td>
<td>Cyanide</td>
<td></td>
<td>Rinses & concentrates e.g. Cyanomat®</td>
</tr>
</tbody>
</table>
Table II. Gives an Overview of the described case study plants and waste water produced.

<table>
<thead>
<tr>
<th>User</th>
<th>Waste water source</th>
<th>Method of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilayer Technologies</td>
<td>Electroless copper rinses & concentrates</td>
<td>Batch</td>
</tr>
<tr>
<td>(PCB – manufacturer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUBAG (GMF)</td>
<td>Cyanide baths & waste water</td>
<td>Sequential</td>
</tr>
<tr>
<td>Thoma Metallveredelung</td>
<td>Electroless Nickel & Zinc/Nickel</td>
<td>Alternating</td>
</tr>
<tr>
<td>(metal finishing)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table III. Contents of the electroless CuEDTA bath and levels at Multek after treatment with the a.c.k. UV-process.

<table>
<thead>
<tr>
<th></th>
<th>Concentration in the bath in mg/dm³</th>
<th>Concentration after alkaline precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>5,000 – 6,000</td>
<td>0.2 – 0.5 mg/dm³</td>
</tr>
<tr>
<td>Na-EDTA</td>
<td>25,000 – 35,000</td>
<td>< 10 μg/dm³</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>6,000</td>
<td>n.n.</td>
</tr>
<tr>
<td>COD</td>
<td>43,000 – 60,000</td>
<td>Approx. 1,000 mg/dm³</td>
</tr>
<tr>
<td>TOC</td>
<td>14,000 – 20,000</td>
<td></td>
</tr>
</tbody>
</table>
Table IV: Waste water configuration at FUBAG, metal plating AG (CH)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Waste water</th>
<th>After treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste water in m³/d</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cyanide in mg/L</td>
<td>6.500 – 10.000</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Copper in mg/L</td>
<td>approx. 5.000</td>
<td>< 0.3</td>
</tr>
<tr>
<td>Nickel in mg/L</td>
<td>10.000 – 15.000</td>
<td>< 0.25</td>
</tr>
<tr>
<td>Zinc in mg/L</td>
<td>approx. 1.000</td>
<td>< 0.4</td>
</tr>
<tr>
<td>Silver in mg/L</td>
<td>approx. 10</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Gold in mg/L</td>
<td>traces</td>
<td>n.d.</td>
</tr>
<tr>
<td>Treatment time</td>
<td>4.5 h</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>brown-green</td>
<td>clear</td>
</tr>
</tbody>
</table>

Table V. Effluent streams and the important chemical components at Thoma Metallveredelung

<table>
<thead>
<tr>
<th>Total volume of the batch: 12 m³</th>
<th>Proportion in batch in m³</th>
<th>Chelates in effluent</th>
<th>Concentration chelates in mg/dm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroless nickel</td>
<td>4 – 5</td>
<td>Carboxylates, Gluconates</td>
<td>1,000 – 4,000</td>
</tr>
<tr>
<td>Zinc pickling</td>
<td>2</td>
<td>Aromatic Carboxylates</td>
<td>1,000 – 2,000</td>
</tr>
<tr>
<td>Acid pickle (HNO3)</td>
<td>2</td>
<td>Ammonium, carboxylates</td>
<td>max. 500</td>
</tr>
<tr>
<td>Ammoniumbifluoride</td>
<td>2</td>
<td>Ammonium</td>
<td>2,000 – 3,000</td>
</tr>
<tr>
<td>Zinc – nickel</td>
<td>9</td>
<td>Aminocarboxylates, Cyanides</td>
<td>Approx. 8,000</td>
</tr>
</tbody>
</table>
Ni or Cu plating process by means of electrolyses

- Energy and water recuperation possible
- Improvement of product quality and at the same time prevention of waste water.
Improvement of product quality
Recuperation of metal and water
Prevention of waste water
Comparison between old AC technology and new Enviolet® technology
Application examples
ENVIOLET®-systems

• for different waste streams in combination
 ✓ Antibiotics and X-ray waste
 ✓ Cyanide detoxification
 ✓ Ni phosphite
 ✓ Oil emulsions

• At the same time flexible and compact
• for different waste streams such as waste gas (e.g. VOX, NOx removal)
The producer of EDTA compared different technologies. The focus was:

- simple process
- Selective to keep the operational costs low.
- By-products are biological available

Table VII: Resume of the assignment and waste water specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow in m3/h</td>
<td>8 - 12 m³</td>
</tr>
<tr>
<td>EDTA–Konzentration</td>
<td>400 - 500 mg/l</td>
</tr>
<tr>
<td>Other components</td>
<td>org. by-products ca. 0,3%</td>
</tr>
<tr>
<td></td>
<td>Na₂SO₄ ca. 18,5 %</td>
</tr>
<tr>
<td></td>
<td>COD ca. 2000 – 3000 mg/l</td>
</tr>
<tr>
<td></td>
<td>Chloride im ppm-range</td>
</tr>
<tr>
<td>Waste water temperature</td>
<td>30 - 40 °C</td>
</tr>
<tr>
<td>Degradation rate EDTA</td>
<td>> 50 %</td>
</tr>
<tr>
<td>Costs in Euro/m3</td>
<td>< 0,5</td>
</tr>
<tr>
<td>pH-Value</td>
<td>1,5 - 2</td>
</tr>
</tbody>
</table>
Groundwater and remediation applications

Enviolet® is a powerful instrument for elimination of PAH, VOCI, cyanide etc.
Conclusion

• Enviolet®-UV-technology is an effective technology in a wide range of small and large applications in different industries.

• It is economical feasible, were other cheaper methods fail or were other methods need to be helped to come to the final results.

• The Enviolet®-systems are well engineered compact, flexible systems, which can be used for several problems as stand alone or combined with other technologies as there is:
 ✓ energy recuperation,
 ✓ water recuperation,
 ✓ product recuperation and or product quality improvement.
With thanks to the owners of the Enviolet® technology
Dr. Ing. Martin Sörensen
Dipl. Ing. Jürgen Weckemann