Solvent flux behaviour and rejection characteristics of hydrophilic and hydrophobic TiO$_2$ and ZrO$_2$ membranes

Dobrak A.1, Verrecht B.1,2, Van den Dungen H.1, Leysen R.2, Buekenhoudt A.2, Van der Bruggen B1.

1Applied Physical Chemistry and Environmental Technology Section, KULeuven, Belgium
2Environmental and Process Technology, VITO, Mol, Belgium
Outline

• Introduction:
 - SRNF – alternative??????
 - Membranes – which are suitable for a detailed transport description????

• Materials and methods:
 - Set – up, solvents, membranes, procedure

• Results and discussion — solvent flux and rejection characteristics through ceramic membranes

• Conclusions: transport mechanism (viscous flow??) and rejection...
Introduction

• **Solvent Resistant Nanofiltration (SRNF)**
 = viable alternative for energy consuming conventional processes (distillation, evaporation...)

• **New SRNF membranes:**
 - Polymeric: swell and crack in non-polar organic solvents
 - Ceramic: better chemical, thermal and mechanical resistance!!!
Materials and methods

• Experimental set – up: cross – flow filtration unit

• Membranes:
 - Hydrophilic TiO\textsubscript{2} (MWCO: 275, 650, 1400 and 7000 Da) manufactured by VITO (Mol, Belgium) and HITK (Hermsdorf, Germany)
 - Hydrophobic ZrO\textsubscript{2} (MWCO: 600 Da) manufactured by HITK (Hermsdorf, Germany)

• Solvents: water, methanol, ethanol, 2-propanol, toluene, n-hexane – selected by molecular size, viscosity and polarity
Materials and methods

- **Solvent flux measurements**
 - **Pressure:**
 - 5 bar for 275, 1400 Da TiO$_2$ and 600 Da ZrO$_2$ membranes
 - 3 bar in case of 7000 Da TiO$_2$ membrane
 - **Temperature range:** 15 – 50° C

- **Rejection measurements**
 - polyethyleneglycols (PEGs) + water
 - brilliant blue (MW=826 Da) + solvent (ethanol)
 - bromothymol blue (MW=624 Da) + solvents (ethanol, toluene)
Materials and methods

Brilliant blue (MW = 826 Da) polar

Bromothymol blue (MW = 624 Da) non-polar
Results: **Hydrophilic TiO$_2$ membranes**

MWCO: 275 Da

- Water
- Methanol
- Ethanol
- 2-Propanol
- n-Hexane
- Toluene

MWCO: 1400 Da

- Water
- Methanol
- Ethanol
- 2-Propanol
- n-Hexane
- Toluene

No pure viscous flow
Results: Hydrophilic TiO$_2$ membranes

MWCO: 275 Da
- Water
- Methanol
- Ethanol
- 2-Propanol
- n-Hexane
- Toluene

MWCO: 1400 Da
- Water
- Methanol
- Ethanol
- 2-Propanol
- n-Hexane
- Toluene

MWCO: 7000 Da
- Toluene
- Methanol
- 2-Propanol
- n-Hexane
- Ethanol
- Water

Viscous flow
Results: Hydrophilic TiO$_2$ membranes

Detailed temperature influence on solvent flux

MWCO: 275 Da

Increase of the flux values with about 100% from 20 to 50°C
Results: Observed activation energy

<table>
<thead>
<tr>
<th>MWCO [Da]</th>
<th>Solvent</th>
<th>E_j [kJ/mol]</th>
<th>E_η [kJ/mol]</th>
<th>ΔE [kJ/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>Water</td>
<td>23.0</td>
<td>16.1</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>22.1</td>
<td>10.5</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>30.8</td>
<td>14.2</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>2-propanol</td>
<td>43.5</td>
<td>21.5</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>28.8</td>
<td>9.0</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td>n-hexane</td>
<td>19.4</td>
<td>6.5</td>
<td>12.9</td>
</tr>
<tr>
<td>1400</td>
<td>Water</td>
<td>19.7</td>
<td>16.1</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>14.3</td>
<td>10.5</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>18.0</td>
<td>14.2</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>2-propanol</td>
<td>26.5</td>
<td>21.5</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>14.1</td>
<td>9.0</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>n-hexane</td>
<td>10.3</td>
<td>6.5</td>
<td>3.8</td>
</tr>
<tr>
<td>7000</td>
<td>Water</td>
<td>15.3</td>
<td>16.1</td>
<td>-0.8</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>18.2</td>
<td>10.5</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>19.8</td>
<td>14.2</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>2-propanol</td>
<td>14.8</td>
<td>21.5</td>
<td>-6.6</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>11.1</td>
<td>9.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>n-hexane</td>
<td>10.7</td>
<td>6.5</td>
<td>4.3</td>
</tr>
</tbody>
</table>
Results: Hydrophobic ZrO$_2$ membrane

MWCO: 600 Da

<table>
<thead>
<tr>
<th>MWCO [Da]</th>
<th>Solvent</th>
<th>E_J [kJ/mol]</th>
<th>E_η [kJ/mol]</th>
<th>ΔE [kJ/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>Methanol</td>
<td>12.5</td>
<td>10.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>14.3</td>
<td>14.2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>2-propanol</td>
<td>24.3</td>
<td>21.5</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>13.2</td>
<td>9.0</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>n-hexane</td>
<td>8.4</td>
<td>6.5</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Viscous flow
Results: Rejection characteristics

<table>
<thead>
<tr>
<th>Membrane</th>
<th>MWCO</th>
<th>Solute</th>
<th>Solvent</th>
<th>Rejection [%]</th>
<th>Flux [l h⁻¹ m⁻²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25°C</td>
<td>50°C</td>
</tr>
<tr>
<td>TiO₂</td>
<td>275</td>
<td>Brilliant blue</td>
<td>Ethanol</td>
<td>99.1</td>
<td>98.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethanol</td>
<td>67.0</td>
<td>62.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toluene</td>
<td>99.3</td>
<td>99.3</td>
</tr>
<tr>
<td>TiO₂</td>
<td>650</td>
<td>Brilliant blue</td>
<td>Ethanol</td>
<td>95.5</td>
<td>98.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethanol</td>
<td>55.5</td>
<td>57.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toluene</td>
<td>\</td>
<td>99.9</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>600</td>
<td>Brilliant blue</td>
<td>Ethanol</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethanol</td>
<td>16.5</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toluene</td>
<td>36.0</td>
<td>40.0</td>
</tr>
</tbody>
</table>
Conclusions: Solvent flux

• Hydrophilic TiO$_2$ membranes
 - 275, 1400 Da – permeability and viscosity increased with temperature
 - 7000 Da – the permeation mechanism of solvents obeys the viscous flow
 - Observed activation energies of solvent permeation were larger for membranes with lower MWCO and higher than the activation energies of solvent viscosity

• Hydrophobic ZrO$_2$ membranes
 - Increase of the flux with the temperature attributed to a viscosity decrease
 - Applicable for non-polar organic solvents (high n-hexane and toluene fluxes)
Conclusions: Rejection characteristics

• Temperature does not affect the rejections
• High values for hydrophilic membranes and low for hydrophobic membranes
• Polar brilliant blue rejections in ethanol were the highest (high molecular size of solute, affinity to the membrane surface...)
• Rejection of bromothymol blue (non-polar) was lower in ethanol (more polar) than in the toluene (less polar)!!
Acknowledgements

• K.U.Leuven Research Council (OT/06/37)

• VITO (PhD grant for B.Verrecht)

For financial support!!!!