In Vitro Testing in Contract Research: A Valid Alternative?

Robert Guest
Head of Alternative and Acute Toxicology

SafePharm Laboratories
• Contract Research Organisations – Setting the Scene

• Why *in vitro*? From the ‘old’ to the ‘new’

• *In vitro* testing services - SafePharm and RCC

• Concluding comments
Contract Research Organisations – Setting the Scene

- CRO, CTO (testing) CSO (services)
- In existence last 70 years
- Many private, a few part Government owned
- Mission/Purpose – to provide testing or other services to industry (and generate revenue)
- Some non-profit making
- Recent acquisitions by multinational corporations

What services?

Health Effects assessment
(hazard assessment & safety evaluation)

- Short term (acute) toxicology
- Sub chronic & chronic toxicology
- Developmental and Reproductive Toxicology
- Genetic Toxicology
- Carcinogenicity
- Safety Pharmacology
Other Services

- Drug synthesis
- Drug metabolism
- Formulation development
- Efficacy studies
- Pharmaco/toxicokinetics
- Ecotoxicology (terrestrial, avian and aquatic toxicology)
- Chemical & bioanalytical services
- Regulatory support
Which Industry Sectors?

• Pharmaceuticals/biopharmaceuticals
• Fine Chemicals
• Raw materials and Isolated Intermediates
• Consumer Products and ingredients
• Plant Protection Products
• Biocides
• Medical Devices
SafePharm Laboratories Limited and RCC

Both wholly owned by Harlan Sprague Dawley Inc.

Each in existence for over 30 years
SafePharm Laboratories Limited

- Founded in 1970
- Acquired by HSD July 2007
- Central UK
- 25 acre site
- GLP Accredited

SafePharm Laboratories
Testing for a Safer Future
RCC

- Founded in 1977
- Acquired by HSD 2005
- Sites in Switzerland, Germany, Spain, India, Canada, Japan
- GLP Accredited
SafePharm Laboratories Limited and RCC

= A New Global Contract Service Organisation

With a single identity – watch this space!
Why Use a Contract Laboratory?

- Service orientated
 - provide specialist services not available in-house at the sponsoring Company
 - and/or routine testing services (allows the sponsoring Company to allocate its resources to greater advantage)
- Well established CROs have an extensive clientbase and wealth of experience
- Systems optimised for speed and quality and cost effectiveness
- GLP accredited
- Not unusual for a Company to identify primary & secondary CROs for provision of services
- Viewed as partnerships instead of customer-provider
WHY IN VITRO?
FROM THE ‘OLD’ TO THE ‘NEW’
The ‘old’: *In Vivo*

Examples of mammalian studies

- Short term (acute) toxicology
- Sub chronic & chronic toxicology
- Developmental and Reproductive Toxicology
- Genetic Toxicology
- Carcinogenicity
- Safety Pharmacology

Variety of species

- Rodent (e.g. rat, mouse), non-rodent (e.g. rabbit, dog, pig, non-human primate)
The ‘new’: *In Vitro*

In Vitro Testing

- 20 years ago, little demand
- Not a realistic business opportunity
- Many assay systems available
- Very few validated

The situation is changing
Why are Alternative Tests Required?

Scientific, Societal and Regulatory Pressures

- Regulatory Agencies
- Trade Associations
- Non-profit making organisations
- Academia
- Industry
- Government Departments

Animal Welfare
- The Public
- Governments
- Corporations
- Animal Welfare Groups

Scientific Advancement
- Trade Associations
- Government Departments

3 Rs
- Refinement
- Reduction
- Replacement

ALTERNATIVE METHODS

2 Rs
- Relevance
- Reproducibility

Why are Alternative Tests Required?

Scientific, Societal and Regulatory Pressures

Regulatory Agencies
Trade Associations
Non-profit making organisations
Academia
Industry
Government Departments

Animal Welfare
- The Public
- Governments
- Corporations
- Animal Welfare Groups

Scientific Advancement
- Trade Associations
- Government Departments

3 Rs
- Refinement
- Reduction
- Replacement

2 Rs
- Relevance
- Reproducibility
Why are Alternative Tests Required?

Drawbacks of mammalian studies

• Species differences
• Health status
• Some subjective endpoints
• Responses are assessed but mechanisms are rarely evaluated
• Reproducibility
• Lack of performance standards
• Laboratory space
• ANIMAL WELFARE
Why are Alternative Tests Required?

Regulatory Framework: Europe

- EU Cosmetics Directive 76/768/EEC
- New EU Chemicals Regulation (REACH) *

*Registration, Evaluation, Authorisation and restriction of Chemicals

National Legislation e.g.

- UK Animals (Scientific Procedures) Act 1986
In vivo studies: Implementation of the 3Rs

Reduction (of severity) and refinement have been used with success

- Acute oral toxicity OECD 401 replaced: OECD 420, 423, 425
- Skin sensitisation OECD 406 replaced: OECD 429 LLNA
- Acute inhalation toxicity OECD 403: potential replacement by OECD 433 and 436
- Incorporating screening tests where applicable
How are *in vitro* methods being used by CROs?

- Used extensively as screening tools
- Integration into tiered testing strategies
- For product selection (benchmarking)
- As full replacement methods where validated and regulatory accepted methods are available
- To elucidate mechanisms of action

Reduction of severity of procedures
Reduction in animal numbers
How are *in vitro* methods being used by CROs?

- Drug discovery
- Efficacy
- Bioavailability - absorption
- Metabolism
- Safety Assessment
- Hazard Determination
Challenges to adoption of *in vitro* methods

- Rather limited availability of validated models/test guidelines (but expanding)
- Adoption as official test guidelines has been slow
- History of use of mammalian models. Fear of the unknown
- New skills required
- Relatively low demand
- Cost??
How are Alternatives Used at SafePharm?

- A proactive approach, but almost no pure R&D
- Involvement in prevalidation and validation studies
- Promising new methods, or newly validated methods are investigated and internally ‘validated’ using appropriate reference chemicals
- Screening methods incorporated into ‘ethical testing strategies’
In Vitro Testing at Safepharm: Notable milestones & achievements

- **1987**: In vitro Genetox testing batteries e.g. Ames, Chromosome Aberration, Mouse Lymphoma Assays

- **1999**: Decision to actively develop the use of non-genetox alternative methods for hazard identification: Initially *ex vivo* local tolerance - introduction of REET (IRE) & TER corrosivity

- **2000**: Formation of Alternative Toxicology Section
In Vitro Testing at Safepharm: Notable milestones & achievements

- **2000**: Internal validation of B.41 3T3 NRU phototoxicity assay completed

- **2004**: completion of ‘catch-up validation’ of SkinEthic RHE corrosivity model (OECD 431)

- **2005**: Submission of IRE protocol to ICCVAM
 Opening of new *in vitro* testing laboratory
In Vitro Testing at Safepharm: Notable milestones & achievements

• 2006:
 Completion of ‘catch-up validation’ of CellSystems EST-1000 corrosivity model (OECD 431)
 Completion of pre-validation of the Slug Mucosal Irritation Assay (SMI) for eye irritation
 Introduction and in-house validation of BCOP and HETCAM

• 2007: In-house validation of Episkin skin irritation test (ECVAM protocol)

• 2007/8: Utilisation of SkinEthic Human Oral Epithelium model
Range of Services

Range of services offered influenced by

- Demand

- availability of appropriate methods

- benefits in terms of animal welfare and/or improved science
IN VITRO TESTING SERVICES
Genetic Toxicology

Bacterial mutagenicity test
 e.g. ‘Ames’ test using *Salmonella typhimurium*

Chromosome aberration test
 e.g. Human Lymphocytes, CHL Cells
Genetic Toxicology

Mammalian cell mutation test
 e.g. Mouse Lymphoma L5178Y TK +/- Assay

Mammalian Bone marrow test
 e.g. in vitro mouse micronucleus test

Comet Assay
Local Tolerance

Skin corrosivity

Skin irritation

Eye irritation

Oral mucosal irritation
SKIN CORROSIVITY

1. *Ex Vivo* TER

2. Membrane Barrier
Transcutaneous Electrical Resistance Assay (OECD 430)

An *Ex Vivo* Test for Skin Corrosivity

- Utilises skin discs taken from the shaved dorsal region of humanely killed rats (aged 28-30 days)

Skin discs held in place over the end of a PTFE tube, epidermal side uppermost, using a rubber ‘O’ring
Transcutaneous Electrical Resistance Assay (OECD 430)

An *Ex Vivo* Test for Skin Corrosivity

TER Measurement
(24-hour exposure)
Corrositex™

An *In Vitro* Membrane Barrier Test (OECD 435)

Commercial Test Kit

Chemical Detection System (CDS)
SKIN CORROSIVITY
HUMAN TISSUE MODELS
Skin Corrosivity: Human Tissue Models (OECD 431)

Human Tissue Equivalents e.g. Episkin, SkinEthic RHE, MatTek Epiderm, Cellsystems EST-1000

- Three dimensional tissue
- Cultured from normal, human epidermal keratinocytes
- Forms a highly differentiated tissue that closely resembles human epidermis

Photograph courtesy of SkinEthic
Skin Corrosivity: Human Tissue Models (OECD 431)

• Validated method (OECD 431 and Method B.40 of Annex V to 67/548/EEC)

• Endpoint is tissue viability (MTT reduction assay)
Skin Corrosivity: Human Tissue Models

Topical application → Incubation → Washing

MTT Assay
SKIN IRRITATION
HUMAN TISSUE MODELS
Multi-endpoint analysis (MEA)

Tissue viability (MTT)

Release of inflammatory mediators

Histological examination

Negative control, 60 min exposure

SDS 0.5%, 60 min exposure
Skin Irritation

• Episkin: 15 minute + 42-hour post incubation
• Fully validated protocol. ESAC Statement issued

• Other commercial models: e.g. SkinEthic RHE, MatTek Epiderm, Cellsystems EST-1000
• Protocol variations
EYE IRRITATION

EX VIVO

(ORGANOTYPIC) MODELS
Ex vivo (Organotypic) Models

- Isolated Rabbit Eye Test (IRE/REET)
- Bovine Corneal Opacity Test and Permeability Test (BCOP)
- Hen’s Egg Test – Chorioallantoic Membrane (HET-CAM)
- Isolated Chicken Eye Test (ICE)
- BRDs and protocols available

http://iccvam.niehs.nih.gov/methods/ocutox/ivocutox.htm
Within the EU, a positive result in one of these tests is acceptable for classification as an irritant (R41) without the need for further testing.

RABBIT ENUCLEATED EYE TEST (REET)

aka ISOLATED RABBIT EYE TEST (IRE)
Rabbit Enucleated Eye Test (REET)

- Full thickness corneal model
 - ‘Validated’ in-house for screening of severe eye irritants
- Used at SPL since 1999
- Validated on behalf of GSK for worker safety assessment
- Has minimised exposure of animals to severe irritants
- ICCVAM BRD
Rabbit Enucleated Eye Test (REET)

REET Apparatus

Superfusion Chambers
Rabbit Enucleated Eye Test (REET)

Observations

- Visual assessment of corneal opacity
- Uptake of sodium fluorescein dye by the cornea
Rabbit Enucleated Eye Test (REET)

Measurement of corneal thickness (optically or using ultrasonic pachymeter)

Slit-lamp biomicroscopic examination of the cornea
BOVINE CORNEAL OPACITY AND PERMEABILITY TEST (BCOP)
BCOP

Bovine Cornea

Endpoints: Corneal Opacity & Permeability
HET-CAM

Validated in-house for screening of severe eye irritants

Testing of formulations

ICCVAM BRD
EYE IRRITATION
HUMAN TISSUE MODELS
Eye Irritation: Human Tissue Models

SkinEthic Human Reconstituted Corneal Epithelium (RHCE)

- Transformed human keratinocytes of the cell line HCE
- Forms a three dimensional corneal epithelium
- MEA approach

Other models are available e.g. MatTek Epiocular
Eye Irritation: Testing Strategy

Different models can be used within a battery of tests to evaluate eye irritation potential

Example – in accordance with recommendations of ECVAM workshop 2005 (see EPAA website)

At SafePharm, full thickness (ex vivo) corneal models are used in conjunction with the human reconstituted corneal model to identify severe irritants and ‘non-irritants’

Oral Mucosal Irritation

Testing of oral care products e.g. dentifrice

Photograph courtesy of SkinEthic

MEA approach
BARRIER MODELS

IN VITRO DERMAL ABSORPTION
In Vitro Dermal Absorption

OECD Test Guideline 428

- Measures diffusion of chemicals into and across excised skin
- Use radiolabelled or non-radiolabelled test material
- Receptor fluid sampled at predetermined time-points
Other Barrier Models

Available Systems

- Intestinal uptake using CaCo-2 cells
- Blood brain barrier system using pig brain microvascular endothelial cells (BMEC)
PHOTOTOXICITY
In Vitro 3T3 NRU Phototoxicity Test

- OECD 432
- Method B.42 of Annex V to 67/548/EEC
- Mouse Fibroblast 3T3
- Determines the potential of chemicals to cause phototoxicity following exposure to UVA radiation (315 – 400 nm)
CARCINOGENICITY
Cell Transformation Test

Available Systems

- Balb/c 3T3 assay
- Syrian hamster embryo cell assay (SHE Assay)
- Evaluation of morphologically transformed colonies and foci

Applications

- Detection of non-genotoxic carcinogens
METABOLISM
Metabolism *in vitro*

Fields of Work

- Metabolic stability with metabolic profiling
- Species specific kinetics (including rats, dogs, primates and humans)
- Drug-Drug interactions with phase I, II and III proteins (e.g. alterations of CYP and UGT activity, MDR1 interactions)

Available Systems

- Liver homogenates
- Hepatic microsomes
- Hepatocytes
different species
Other *In vitro* Systems

Cytotoxicity – various cells/cell lines

HERG Assay – QT prolongation
Concluding comments

• There are scientific, regulatory and animal welfare reasons for *in vitro* testing

• *In vitro* models are being routinely used for assessment of genotoxicity and are becoming firmly established in other areas of evaluation e.g. local tolerance
Outsourcing of testing to CROs is predicted to increase.

Will CROs be able to meet the demands of industry for *in vitro* testing?

Based on previous experience, the answer should be yes.

- Business opportunity
- Resources will be provided
Concluding comments

• Will CRO’s be positioned to undertake pure research?

Possibly, if sufficient funding is provided, but the priority is always likely to be with high throughput testing

• CRO’s are widening their portfolio of in vitro assay systems

….. and where appropriate will ‘scale up’ their ability to test routinely on a large scale to meet regulatory, scientific and animal welfare demands
Acknowledgements

Andrew Whittingham Dr Wolfgang Voelkner
Neil Warren Dr Albrecht Poth
Helen Bytheway

Thank you for your attention
Questions?